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MATRIX Affl) GRAPHIC SOLUTIONS TO THE TRAVELING SALESMAIT PROBLEM

Ross Mullner

ABSTRACT

Large companies employing fleets of trucks minimize their truck-
ing routes by utilizing optimization techniques. These companies can
economically afford to hire operations research analyzers and computer
programmers to find their optimal routes. Conversely, small companies
who lack the use of a computer attempt to find their optimal routes by

trial and error. This paper explores alternatives to the trial and

error method by demonstrating various traveling salesman algorithms
that can be utilized without the use of a computer. Specifically the

objectives of this study are: (l) to derive optimal routes for the com-
pany under study, and (2) to compare solutions of various traveling sales-
man algorithms in order to recommend the best solution for optimization
that could be economically employed by this and other small companies.
Three matrix or graphic solutions were compared, the Heinritz-Hsiao
algorithm, the Cascade algorithm, and the Lockset method of sequential
programming. After comparison, the Lockset Method was recommended to

the company.

INTRODUCTION

A classical optimization problem is that of the traveling sales-

man. Simply stated, it involves finding an optimal route between a series

of locations or stops, under the condition that each stop is visited once

and only once and a return is made to the point of origin. An optimal

route may be defined in several ways such as the route having the smallest

distance traveled, the least travel cost, or the smallest travel time.

The traveling salesman problem can be divided into two types,

symmetric and asymmetric. A problem is considered symmetric if the

routes between any two points are the same (i.e., the same distance,

travel cost, or travel time) regardless of the direction traversed. For

an asymmetric problem routes vary between any two given points, such as



one way streets where routes cannot be retraced.

Small problems involving only a few stops are typically solved by

listing all possible routes and selecting the shortest route among the

alternatives. This method is known as direct search. However, for

larger problems the number of possible routes increases enormously and

other methods must be employed. For example, a symmetric problem with

twelve stops has nearly 240 million different route possibilities (the

total number of possible routes not counting the reverse of such routes

is equal to 1/2 III). Adding one more stop to the above problem increases

the total possible routes to nearly three billion (Schruben and Clifton,

1968, p. 855).

Since the traveling salesman problem was first posed by Whitney

during a seminar in 1934 (Plood, 1956, p. 6l) , there have been many

algorithms developed which derive near optimal solutions. Some algorithms

are matrix and graphic solutions while others are mathematically more

complex. The majority of current algorithms are of the mathematically

complex type and require the use of a digital computer. Examples of the

above include: dynamic programming, integer programming, linear pro-

gramming, branch-and- bound, tour-to-tour approximations and the Gilmore-

Gomory method. In a review of various computer derived solutions Bill-

more and Nemhauser state:

If the authors were faced with the problem of finding a

solution to a particular traveling salesman problem we

would use dynamic programming for problems with I3 cities
or less, Shapiro' s branch-and-bound algorithms for larger
problems (up to about 70-100 cities for asymmetric prob-
lems and up to about 40 cities for symmetric problems)
and Shen Lin's ' 3-opt' algorithm for problems that cannot
be handled by Shapiro's algorithm. We recommend dynamic
programming over branch-and-bound for smaller problems,
although the expected computer time might be greater, we

are assured that the maximum time is very small (Sellmore
and Nemhauser, 1968, p. 556).



Hence, no one method is applicable for solving all traveling

salesman problems. "The problem is not that of knowing how to find the

solution. The problem is that of knowing how to find the solution

easily" (Garrison, I960, p. 358). But, as of yet there is no one, simple,

efficient, mathematical procedure (Maffei, 1965? p. 16).

PROBLEM

Large companies employing fleets of trucks are quick to learn and

utilize optimization techniques. These firms hire teams of operations

research analyzers and computer programmers to find their optimal or

near-optimal routes. By doing so an enterprise can save time, fuel,

wear on equipment, and utilize its manpower to a greater degree. Smaller

companies, however, rarely can afford the services of such people and

generally lack the use of a computer. How then does a small firm attempt

to find its optimal routes? "The typical method in use today is one of

trial and error, and generally consists of looking at a map, picking out

routes consistent with available carrier capacities, and then by trial

and error attempting to find shorter routes" (Cochran, 1967, p. 2).

This paper explores alternatives to the trial and error method by

demonstrating and comparing various traveling salesman algorithms appli-

cable to one small propane gas distributing company in suburban Chicago.

Specifically, the objectives of this study are: (l) to derive optimal

routes that minimize mileage on the trucking routes of a small company;

and (2) to compare the solutions of various traveling salesman algorithms

to the optimal routes in order to recommend the best solution for optimi-

zation that could be economically employed by small companies.

The actual algorithms chosen for comparison were subject to two



constraints: (l) the company under study did not own or have access to

a digital computer, therefore all solutions would have to be solved by

hand computation; and (2) the particular algorithm recommended for use

would have to be as simple and efficient as possible in order to limit

computation time and cost.

In searching for algorithms which would satisfy these two con-

straints, three matrix or graphic solutions were accepted, while seven

other methods, including those six previously discussed were rejected.

The six rejected methods included: dynamic programming, integer pro-

gramming, linear programming, branch-and-bound, tour-to-tour approxi-

mation, and the Gilmore-Gomory method. These algorithms, although easily

solved by use of a computer, were found to require excessive computation

time by hand. For example, for a five stop problem employing zero-one

programming, a special case of integer programming, there were twenty

variables and twenty constraints. A six stop problem increases the num-

ber of variables to thirty and the number of constraints to 67 (Plane

and McMillan, 1971). The seventh method to be rejected was a graphic

solution formulated by Barachet (l957). This method, after being applied

to various sample problems, was found to be both difficult to employ and

time consuming.

The three solutions chosen for comparison include: (l) the

Heinritz-Hsiao method (Heinritz and Hsiao, 1969), (2) the Cascade algo-

rithm (Haggett and Chorley, 1969), and (3) the Lockset method of sequen-

tial programming (Schruben and Clifton, 1968). Each of the algorithms

will be discussed below, after a brief discussion of the data collection

method.



METHODOLOGY

The data collection for this study consisted of distributing a

set of large scale road maps of the city of Chicago and its suburbs to

each of the company's truckdrivers. On the first series of maps each

driver was asked to trace out his main or original routes and to indicate

every stop made. On the next series of maps each driver was asked to

plot the route he would take from the company directly to each stop.

Lastly, each driver was asked to trace out a route from each stop to

every other stop. An example of one of the routes is illustrated in

Figure 1 (p. 7).

Distance measurements were taken directly from the maps and put

into matrix form. The distance matrices for the main routes are shown

in Tables 1-4.

TABLE 1 — DISTANCE IN MILES FOR ROUTE 1

Stops

1

2 11.37

3 11.65 .70

4 10.13 1.70 1.66

5 9.78 2.12 2.46 .40

6 10.31 1.62 1.90 .41 .57



TABLE 2 — DISTMCE IN MILES FOR ROUTE 2

Stops

1

2 5.35

3 4.58 3.14

4 5.31 4.10 1. 11

5 5.41 4.20 1.21 .10

6 5.23 4.00 1.02 1.19 .29

7 5.35 4.13 1.15 .32 .42 .13

8 3.20 3.29 2.45 2.18 2.26 2.11

Stops

2.25

TABLE 3 — DISTANCE IN PAILES FOR ROUTE 3

1

2 6.80

3 7.85 1.30

4 8.75 2.31 .09

5 11.93 6.78 3.90 3.50

6 16.40 7.97 6.75 6.36 5.05

7 14.50 9.01 8.40 9.16
'

4.82 10.96
8 5.04 8.62 7.58 7.28 10.92 10.45 15.50

TABLE 4 ~ DISTANCE IN MILES FOR ROUTE 4

Stops 123 45 6 789 10 11 12

1

2 .45

3 3.30 3.11

4 6.78 6.62 4.10

5 10.30 10.15 7.64 5.82

6 5.89 5.58 8.60 8.40 9.15

7 6.12 5.89 8.90 8.71 9.50 1.50
8 7.71 7.49 9.00 8.80 9.58 1.60 .42

9 4.00 3.71 6.70 6.57 9.20 5.87 4. 61 4.18
10 3.72 3.43 6.56 6.29 8.95 5.60 4.68 4.24 .25

11 3.04 2.79 5.79 5.67 8.30 4.95 5.74 5.29 1.31 1.05
12 2.62 2.34 5.34 6.30 8.95 5.60 6.87 5.92 1.98 1.67 1.05
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After collecting the data, a small computer program (see Appen-

dix) was written to find the optimal route for three of the four main

routes. By employing direct search for the three routes, the optimal

solutions could be compared to those solutions generated by the three

algorithms, thus serving as one means of evaluation. The optimal solu-

tion for the fourth route could not be found for the number of route

possibilities exceeds the storage capacity of the largest computer.

The optimal and original routes are listed in Table 5.

TABLE 5 — COMPARISON OP OPTIMAL AND ORIGINAL ROUTES

Optimal Original Distance Percent
Routes Routes Saved Saved

1 24.46 25.01 .55 2.19

2 15.52 15.57 .05 .32.

3 42.71 48.24 5.53 11.46

4 - 33-70 ' - -

The first algorithm to be discussed was developed by Heinritz

and Hsiao (heinritz and Hsiao, 1969). These authors, attempting to find

the minimum cost route for the distribution of centrally processed

library material, developed a solution to the traveling salesman problem.

The authors state their algorithm is accurate, can achieve a near-

optimal solution, and requires no mathematical background.

An example of the solution as employed by Heinritz and Hsiao is

illustrated by a main library (a) which must distribute material to

eight branch libraries (B-I). The first step in the procedure is to cal-

culate the cost of transporting the material from the main library to

each branch library. Next, the cost of transporting the material from



;ach branch to every other branch library is computed. These costs are

mtored into a matrix (Table 6)

TABLE 6 — HEINE ITZ-HSIAO ALGORITH!'/! PROCEDURE

TO

A B C D E P G H I

A - 4.8 2.0 1.6 2.8 3.3 4.9 2.3 0.8

B 4.8 - 3.6 5.6 6.8 1.9 9.6 2.8 5.6

C 2.0 3.6 - 2.1 4.3 2.0 6.3 2.1 2.8

D 1.6 5.6 2.1 - 4.0 4.1 4.3 3.5 1.9

PROM E 2.8 6.8 4.3 4.0 - 6.2 4.3 4.1 2.2

P 3.3 1.0 2.0 4.1 6.2 - 8.3 2.3 4.5

G 4.9 9.6 6.3 4.3 4.3 8.3 - 7.1 4.2

H 2.3 2.8 2.1 3.5 4.1 2.3 7.1 - 2.9

I 0.8 5.6 2.8 1.9 2.2 4.5 4.2 2.9 -

Once the matrix is derived, the row representing the starting

point is entered and the lowest value in that row is circled. The

Table 6 starting point is row A and the value circled is 0.8 in coliimn I

Since the A to I portion of the route has been established, the second

move is from I. Therefore, row I is entered and the lowest value in

that row is circled. However, since each stop is to be visited only

once, no return to A is permitted except to terminate the route. Thus,

the value circled is 1.9 in columiri D. Entering row D and ignoring pre-

vious stops, the lowest value is again circled and so on. The last

circle will establish a return to the starting point and will terminate

the route. Por the above example, the near-optimum route is

A-I-D-C-P-B-H-E-G-A.

In applying this procedure to the four trucking routes under
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study, two solutions were greater than the original routes, while the

other two solutions were found to be less than the original routes.

The original routes and those derived by the algorithm are given in

Table 7.

TABLE 7 — COMPARISON OF HEINEITZ-HSIAO ALGORITffl^

MD ORIGINAL ROUTES

Original Routes Heinritz-Hsiao Routes

25.01 24-56

15.57 15.56

48.24 52.67

33-70 41-68

The next algorithm to be examined is the Cascade method. This

method which has been employed by Murchland (l965) in finding elementary

paths in a complete directed graph but it can also be used in solving

traveling salesman problems. The Cascade method uses a matrix, the ele-

ments of which represent either cost, distance, or time between stops.

Blanks are used to indicate unknown values which cannot be estimated.

These blanks are assumed to be larger than the total sum of all elements

in the matrix. Each element along the main diagonal serves in turn as

a pivot. All combinations of one element from the pivot row and pivot

column are sunmed. If any of these sums are smaller than the value at

the row and column intersect, the sum replaces the value at that inter-

sect. When the entire procedure is completed for all pivot points, the

matrix indicates the optimal route (haggett and Chorley, 1969, p- 20l)

.

For example, a hypothetical four by four matrix, consisting of

known and/or estimated values, is constructed (Table 8A) . Each blank



TABLE 8 — PROCEDURE EMPLOYED BY THE CASCADE ALGORITHIfi

11

Prom

A

C

D

Matrix A

To

A B C

2

II 4

D

i::i

Matrix B

Prom To

A B C

A 2

B 1 5

C b 4

D 8 m

D

Matrix _C

Prom To

A B C D

A 2 5 7

B 1
:;::3:

5

C 5 4 9^

L 8 10 1?

Matrix ^
Prom To

A B C D

A 2 5 T

B 1 3 5

C 5 4 9

D 8 10 13

cell is indicated here by a dash. A -, is the initial pivot point. At

step one every possible pair of cells in the pivot row and pivot column

is summed. When a sum such as A-, ^ + A ^ is smaller than the value of
12 41

the intersect (a ) , the sum, which is ten, replaces the original value.

Table 8B, C, and D completes the matrix for each successive pivot point.

The minimum route, assuming point A is the origin, is found by entering

row 1 of the final matrix (Table 8D) and moving to the lowest value in

that row. In matrix D this value is 2 in column 2. Row 2 is entered

to find the third minimum route. Column 3 -h-as the lower remaining number,

and so on. Thus, the minimum route is A-B-C-D.

One advantage of this method is that it is not necessary to enter

all values into the matrix in order to derive a solution. Thus, if the
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value between two points is difficult to obtain and cannot be estimated,

it can be ignored.

After applying the Cascade algorithm to the four trucking routes,

the results were found to be similar to those derived by the Heinritz-

Hsiao method. The solutions from the two methods were the same with the

exception of one route. Similarly, two of these solutions were greater

than the original routes, while two solutions were less than the original

routes. The results of the Cascade algorithm as compared to the optimal,

original, and Heinritz-Hsiao routes are shown in Table 9.

TABLE 9 ~ COMPAEISON OP OPTIJViAL, ORIGINAL AND ROUTES
GENERATED BY THE TWO ALGORITHMS

Optimal Routes Original Routes Heinritz-Hsiao Routes Cascade Routes

24.46 25.01 24.56 24.56

15.52 15.57 15.56 15.56

42.71 48.24 " 52.67 48.56

33.70 41.68 41.68

The final algorithm under consideration is the Lockset method of

sequential programming. This method, which has been applied to routing-

delivery and pickup trucks by Schruben a.nd Clifton (l968), assumes a

maximum initial route where each stop is connected directly to the

origin (Figure 2a), This initial route is then modified by joining stopt

through a series of successive aggregations. An example of the method

applied to a small problem is given below.

Suppose there is a company which supplies a product to four cus-

tomers. The minimal route, using the Lockset method, is found by con-

structing a distance matrix; (Table lO). A list of all possible pairs
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TABLE 10 — DISTMCE MATRIX FOR THE LOCKSET PROBLMi

Plant Customer 1 Customer 2 Customer 3 Customer 4

Plant

Customer 1 34

Customer 2 47 17

Customer 3 67 34
,

26

Customer 4 48 23 34 31

(after Schruben and Clifton, 1968, p. 855)

of stops not involving the plant (or origin) is compiled. Prom this list,

distance-saved coefficients (DSC) for each pair of stops are calculated

using the following equation

PP. + PP.- P.P. = DSC
1 J 1 J

where
P is the origin
P. is the point i

P . is the point j

PP. represents distance between P and P.

P P. represents distance between P and P.

P.P. represents distance between P. and P

The pairings and the DSC for the problem are given in Table 11.

TABLE 11 — PAIRINGS AND DISTANCE-SAVED COEPPICIENTS

Distance-saved coefficientPairing

P.
1

P.

P2 with PI

P3 with PI

P3 with P2

P4 with PI

P4 with P2

P4 with P3

P P.
1

P P.
J

P.P.
1 J

DSC

47 34 17 64

67 34 34 67

67 47 26 88

48 34 23 59

48 47 34 61

48 67 31 84
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The pair of stops with the largest DSC are joined on the same

route, if possible. For this problem P2 and P3 are combined resulting

in the first aggregation P -P„-P_,-P . Each revised route is tested onoo D 0230
the basis of the following criteria: (l) each stop must have at least

one leg connected with the origin, and (2) each stop must have previously

been on a different route. Therefore, joining P^P„ is accepted for both

conditions ar-e met. This leg will be retained throughout subsequent

aggregations for it is "locked in" the route set. The initial route and

the first aggregation are illustrated in Figure 2. Following the same

method, the next largest DSC (P P ) is tested and combined forming a

revised route. Again both criteria are met. The second aggregation

P -P -P -P -P is shown in Figure 3a«02340

PIGUEE 2 — ASSUMED MAXIMUM INITIAL ROUTES

(a) (b)

(after Schruben and Clifton, 1968)



FIGURE 3 — ASSUMED MAXIMUM INITIAL ROUTE
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(a) M

\ fi \

(after Schx-uben and Clifton, 1968)

This procedure is continued until all of the DSC pairs have been

tested. If any DSC does not meet one of these conditions, it is rejected

and the next lower DSC is tested, and so on. When all DSC pairs have

been tested the optimal route has been found. For this problem the

optimal route is P -P., -P^-P^-P,-P and is showm in Pi£:ure 3b.0I2340
Application of the Lockset method to the four trucking routes

under study resulted in three solutions which were less than the orig-

inal routes and one solution which was greater than the original route.

An example of one of the Lockset routes and the results of this method
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as compared to the optimal and original routes and those of the other

two algorithms are given in Figure 4 (p. 1?) and Table 12.

TABLE 12 ~ COMPARISON OP OPTIMAL, ORIGINAL AND ROUTES
GENERATED BY THE THREE ALGORITHMS

Optimal Original Heinritz-Hsiao Cascade Lockset
Routes Routes Routes Routes Routes

24.46 25.01 24.56 24.56 24.46

15.52 15.57 15.56 15.56 15.53

42.71 48.24 52.67 48.56 45.78

- 33.70 41.68 41.68 34.47

CONCLUSION

After comparing the results and the computational efficiency of

the three algorithms, the Heinritz-Hsiao and Cascade methods were rejected

as possible solutions for the company, while the Lockset method was

accepted. This method, although requiring slightly more computation

than the other algorithms, was found to outweigh this minor disadvantage

by its greater accuracy.

The Lockset method was chosen because it was the only algorithm

to find the optimal solution for one of the four routes (24.46) (Table 12).

Second, this was the only method to generate three solutions which were

less than the original routes. Third, the solution which was greater

than the original route was only slightly larger than the original route

as compared to the results of the other two algorithms. Last, the orig-

inal route and solution crossed themselves thus indicating the original
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route was not the minimal possible route (Barachet, 195?) • Further, it

was found that if those links which crossed themselves were modified

into straight routes between stops in the original Lockset solution, the

route generated would be less than the original route. For the route

indicated in Figure 4 this modification resulted in a solution which

was 33.61 miles long as compared to the original route's 33*70 miles.

The Lockset method and its modifications generated four solutions which

were less than the original routes. Therefore, it was recommended to

the company.
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APPENDIX

01 DIMENSION A(8,8)
02 N=8
03 READ (5,51) ((a(i,J)-1,n),I=1,N)
04 51 PORMT (8P5.2)

05 DO 100 1=2,

N

06 SUM=0.0
07 SUM=SUT/t+-A(l,l)

08 DO 90 J=2,N
09 SUM1=SUM
10 IP (J.EQ.I) GO TO 90

11 IP (l.LT.j) SUMI=SUMI+A(i,J)
12 IP (J.LT.I) SUMI=SUMI+A(j,I)
13 DO 80 K=2,N
14 SUM2-SUIva

15 IP (k.eq.i .or.k.eq.j) go to 80

16 IP (J.LT.K) SUM2=SUM2+A(J,K)
17 IP (K,LT,J) SUM2=SUM2+A(K,J)
18 DO 70 L=2,N
19 SUM3=SUM2
20 IP (L.LE.I.OR.L.EQ.K) go to 70

21 IP (K.LT.L) SUM3=SUM3+A(K,L)
22 IP (L.LT.K) SUM3=SUM3+A(L,K)
23 DO 60 M=2,N
24 SUM4=SIM3
25 ip(m.eq.i.or.m.eq.j.or.m.eq.k.or.m.eq.l) go to 60

26 IP(L.LT.M.) SUM4=SUM4+A(L,M)
27 IP(M.LT.L) SUM4-SUM4+A(m,L)
28 DO 50 11=2,

N

29 SUM5=SUM4

30 ip(ii.eq.i.or.eq.j.or.ii.eq.k.or.ii.eq.l.or.ii.eq.m)go to 50

31 IP(M.LT.II) SUM5=SUM5+A(m,I1)
32 IP(II.LT.M) SUM5=SUM5+A(i1,m)

33 DO 40 12=2,

N

34 SUM6=SUM5

35 IP(I2.EQ.I.0R.I2.EQ.J.0R.I2.EQ.K.0R.I2.EQ.L.0R.I2.EQ.M.0R.I2.EQ.
Ill ) GO TO 40

36 IP(ll.LT.I2) SUM6=SUM6+A(i1,I2)

37 IP(l2.LT.Il) SUM6=SUM6+A(I2,I1)

38 SUM6=SUM6+A(1,I2)

39 WRITE(6,200) I, J,K,L,M,I1, 12 , SUM6

40 40 CONTINUE
41 50 CONTINUE
42 60 CONTINQE

43 70 CONTINUE

44 80 CONTINUE

45 90 CONTINUE

46 100 CONTINUE

47 200 PORIvIAT(' 0',7I3j' O'PIO.2)

48 STOP

49 END


















